
1
CIS 422/522

CIS 422/522 © S. Faulk 1

Architectural Design IV

Designing the Module Structure
Design Principles

CIS 422/522 © S. Faulk 2

Architecture Design Process

Building architecture to address business goals:
1. Understand the goals for the system
2. Define the quality requirements
3. Design the architecture

1. Views: which architectural structures should we use?
(goals<->architectural structures<->representation)

2. Documentation: how do we communicate design decisions?
3. Design: how do we decompose the system?

4. Evaluate the architecture (is it a good design?)

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Decomposition Strategies Differ

• How do we develop this structure so that the leaf
modules make independent work assignments?

• Many ways to decompose hierarchically
– Functional: each module is a function
– Pipes and Filters: each module is a step in a chain of

processing
– Transactional: data transforming components
– OOD: use case driven development

• These result in different kinds of dependencies

CIS 422/522 © S. Faulk 4

Decomposition Strategies

• How do we develop this structure so that the leaf
modules make independent work assignments?
– Dependencies are few
– Decisions that might change are encapsulated
– Interfaces are simple and well defined
– I.e. low coupling, high cohesion

• Design goals: modifiability, work assignments,
maintainability, reusability, understandability, etc.

• Observed strategies did not result in independent
modules
– Use-case driven OOD, heuristics
– MVC Pattern

• What should be done differently?
– Why did these approaches fail?

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Use Case Driven OO Process

• Address book design: in-class exercise
• Requirements
• Problem Analysis

– Identify use cases from requirements
– Identify domain classes operationalizing

use cases (apply heuristics)
• OO Design (refinement)

– Allocate responsibilities among classes
– Identify object interactions supporting use

cases
– Identify supporting classes (&

associations)
• Detailed Design

– Design class interfaces (class attributes
and services)

CIS 422/522 © S. Faulk 6

Modular Structure

• Architecture = components, relations, and interfaces
• Components

– Called modules
– Leaf modules are work assignments
– Non-leaf modules are the union of their submodules

• Relations (connectors)
– submodule-of => implements-secrets-of

• Module is an aggregate of its submodules
– Constrained to be acyclic tree (hierarchy)

• Interfaces (externally visible component behavior)
– Defined in terms of access procedures (services or method)
– Services provide only access to module internals

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules =
Work

assignments

CIS 422/522 © S. Faulk 8

Design Principles

• Principle (n): a comprehensive and
fundamental rule, doctrine, or assumption

• Design Principles – rules that guide
developers in making design decisions
consistent with overall design goals and
constraints
– Guide the decision making process of design by

helping choose between alternatives
– Embodied in methods and techniques (e.g., for

decompositions)

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Three Key Design Principles

• Most solid first
• Information hiding
• Abstraction

CIS 422/522 © S. Faulk 10

Principle: Most Solid First

• View design as a sequence of decisions
– Later decisions depend on earlier
– Early decisions harder to change

• Most solid first: in a sequence of decisions, those
that are least likely to change should be made
first

• Goal: reduce rework by limiting the impact of
changes

• Application: used to order a sequence of design
decisions
– Generally applicable to design decisions
– Module decomposition – ease of change

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Information Hiding

• Design principle of limiting dependencies
between components by hiding information
other components should not depend on

• An information hiding decomposition is one
following the design principles that (Parnas):
– System details that are likely to change

independently are put in different modules
– The interface of a module reveals only those

aspects considered unlikely to change
– Details other modules should not depend on are

encapsulated

CIS 422/522 © S. Faulk 12

Decomposition Strategy

• Decompose recursively
– If a module holds decisions that are likely to change

independently, then decompose it into submodules
– Decisions that are likely to change together are allocated to the

same submodule
– Decisions that change independently should be allocated to

different submodules
• Stopping criteria

– Each module contains only things likely to change together
– Each module is simple enough to be understood fully, small

enough that it makes sense to throw it away rather than re-do
• Define the Interfaces

– Anything that other modules should not depend on become
secrets of the module (e.g., implementation details)

– If the module has an interface, only things not likely to change
can be part of the interface

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Effects of Changes

• Consider what happens to
communication among
module developers

• Suppose we have groups of
requirements R1 – R3:
– R1 and R3 are related and

likely to change together
– R2 is likely to change

independently
• Suppose we put R1 and R2

in the same module and
assign to different teams
– What happens when R1

changes?
– R2?

• Suppose R1 and R3 are put
in the same module?

R3
R2

R1

R2
R1 R3

Interface Interface

CIS 422/522 © S. Faulk 14

Abstraction

• General: disassociating from specific
instances to represent what the instances
have in common
– Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations
• Modular decomposition: Interface design

principle of providing only essential
information and suppressing unnecessary
detail

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Abstraction

• Two primary uses
• Reduce Complexity

– Goal: manage complexity by reducing the amount of
information that must be considered at one time

– Approach: Separate information important to the problem at
hand from that which is not

• Abstraction suppresses or hides “irrelevant detail”
• Examples: stacks, queues, abstract device

• Model the problem domain
– Goal: leverage domain knowledge to simplify understanding,

creating, checking designs
– Approach: Provide components that make it easier to model

a class of problems
• May be quite general (e.g., type real, type float)
• May be very problem specific (e.g., class automobile, book object)

CIS 422/522 © S. Faulk 16

Address Book Reconsidered

• Consider address book design based on
principles

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Lessons on Patterns

• Patterns are often misused
• Using a pattern correctly requires

understanding it
– “Correctly” – such that the pattern’s design goals

are realized in your design
– “Understanding” – you understand what the

pattern is supposed to accomplish, how it works,
and how to apply it in your context

CIS 422/522 © S. Faulk 18

Lessons on Patterns (2)

• A pattern is a three part rule that expresses
a relation between [Schmidt]:

1. A particular problem context
2. A set of competing forces (goals and

constraints) in that context
3. A software configuration that resolves the set of

forces
• Configuration == objects, interfaces, relations
• Resolves == concurrently addresses the goals and

constraints

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Summary

• Heuristics and patterns are guidelines
– Do not guarantee qualities
– Must understand how and why they work to apply

effectively
• Principles are more direct – achieve qualities

by construction
• Good design requires careful thinking

– Which goals are we trying to achieve
– How design decisions address those goals

CIS 422/522 © S. Faulk 20

Questions?

